

US009441704B2

(12) United States Patent Gaspar et al.

(54) BOLT THROUGH HYDRAULIC MOUNT WITH AND WITHOUT A DECOUPLER

(71) Applicant: **The Pullman Company**, Milan, OH

72) Inventors: **Zoren E. Gaspar**, Huron, OH (US); **Jay W. Thornhill**, Huron, OH (US)

(73) Assignee: **The Pullman Company**, Milan, OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/754,740

(22) Filed: Jun. 30, 2015

(65) Prior Publication Data

US 2015/0300444 A1 Oct. 22, 2015

Related U.S. Application Data

- (62) Division of application No. 14/028,606, filed on Sep. 17, 2013, now Pat. No. 9,097,310.
- (60) Provisional application No. 61/702,828, filed on Sep. 19, 2012.
- (51) Int. Cl. F16F 15/02 (2006.01) F16F 13/16 (2006.01) F16F 13/14 (2006.01) F16F 13/08 (2006.01)
- (52) **U.S. CI.** CPC *F16F 15/022* (2013.01); *F16F 13/08* (2013.01); *F16F 13/1463* (2013.01); *F16F 13/146* (2013.01)
- (58) Field of Classification Search CPC F16F 13/1463; F16F 15/022; F16F 13/08; F16F 13/16

(10) Patent No.: US 9,441,704 B2 (45) Date of Patent: Sep. 13, 2016

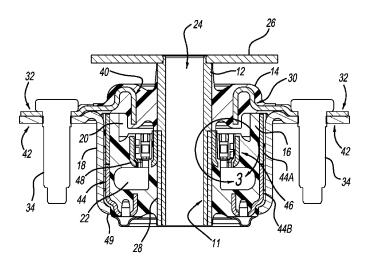
11

(56) References Cited

U.S. PATENT DOCUMENTS

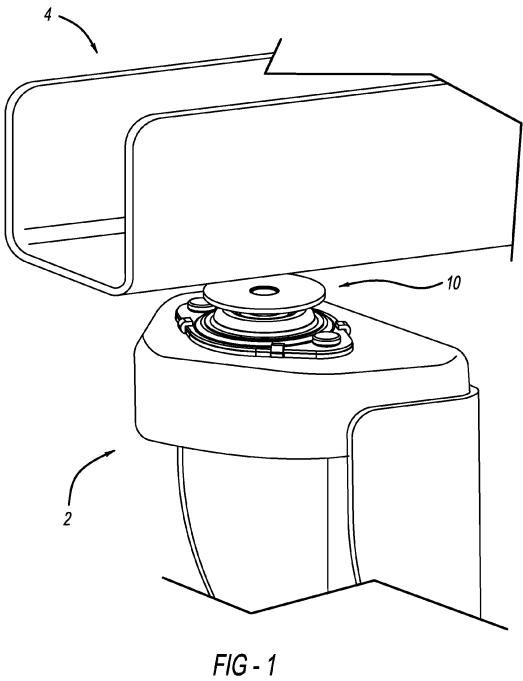
4,418,897 A 12/1983 Hartel et al. 4,759,534 A 7/1988 Hartel 4,936,556 A 6/1990 Makibayashi et al. 5,005,810 A 4/1991 Sawada et al. 5,498,060 A 3/1996 Satomi (Continued)

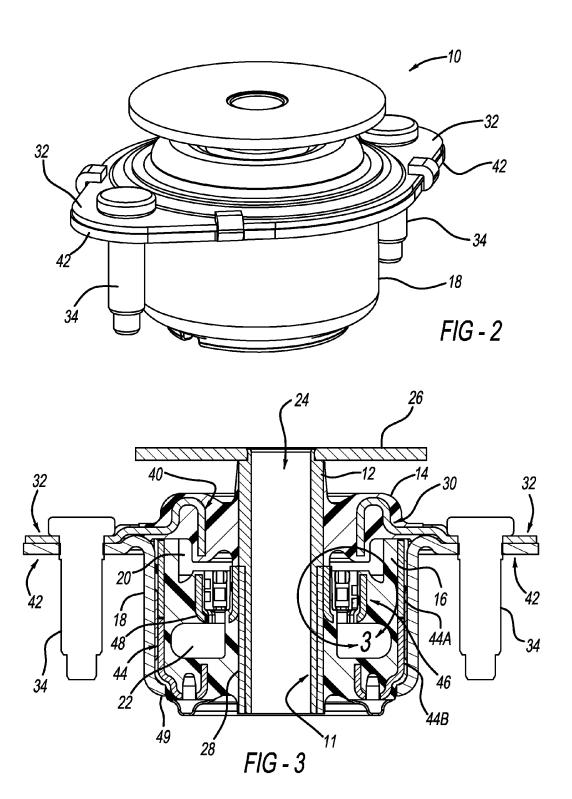
OTHER PUBLICATIONS

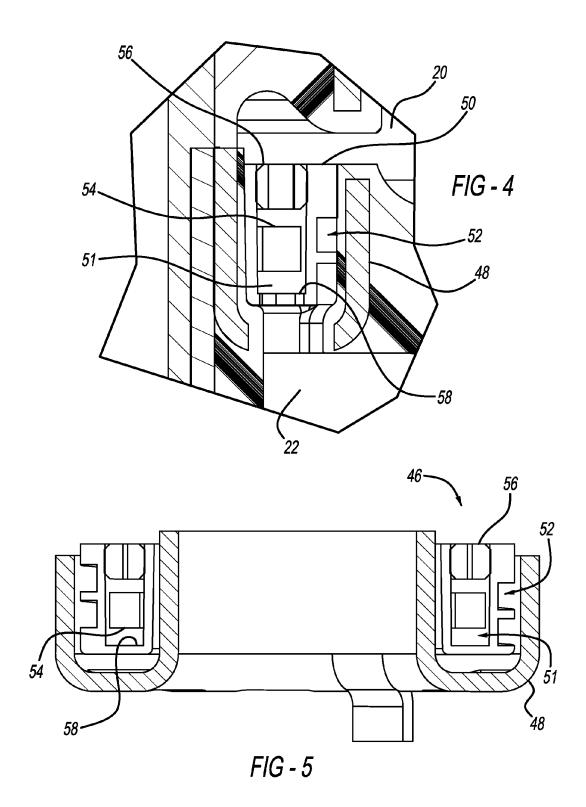

Search Report and Written Opinion mailed Dec. 19, 2013 in corresponding PCT Application No. PCT/US2013/060314 (10 pages).

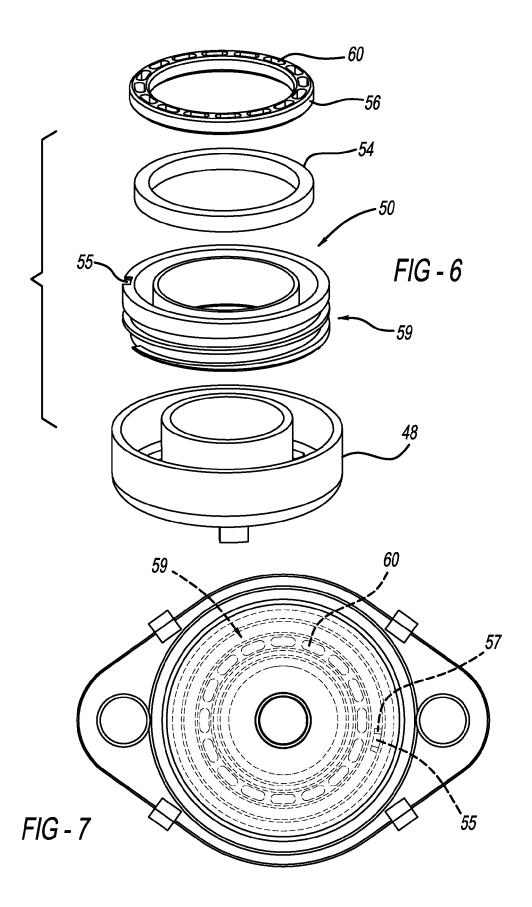
Primary Examiner — Thomas J Williams
Assistant Examiner — Mariano Sy
(74) Attorney, Agent, or Firm — Harness, Dickey & Pierce,
P.L.C.

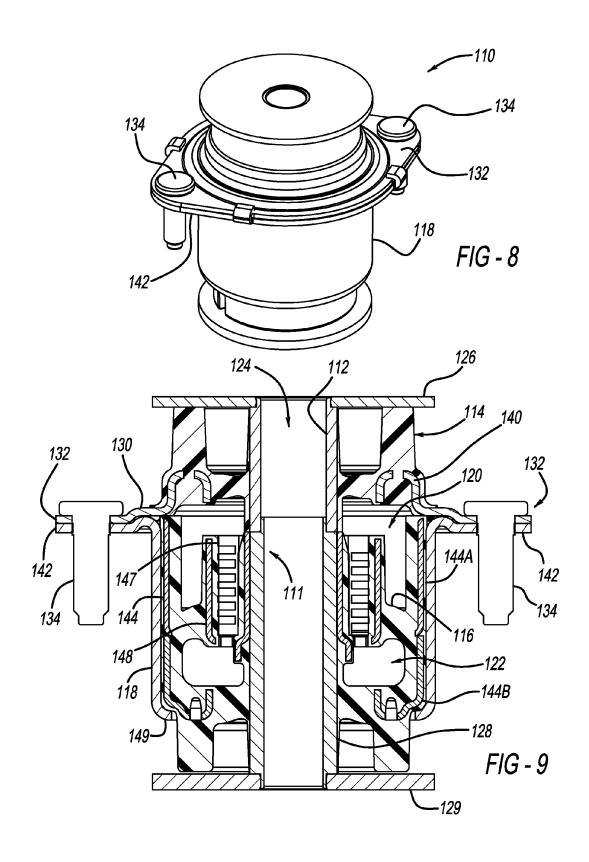
(57) ABSTRACT

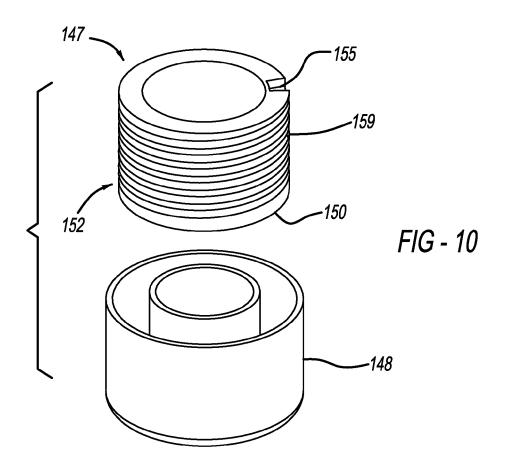

A mount having a bolt through configuration couples two components of a vehicle. The mount includes a first elastomeric member that defines a first portion of a first chamber and a second elastomeric member that defines a second portion of the first chamber and defines a second chamber. An inner tube assembly defines an opening for receiving the bolt. The first and the second elastomeric members are bonded to the inner tube assembly. An annular member is disposed between the first and the second chambers. The annular member defines a fluid-track which fluidly couples the first and the second chambers. The mount dampens vibrations at varying amplitudes by pushing fluid between the first and the second chambers via the fluid-track. The mount may also include a decoupler by way of a decoupler ring and decoupler cap to isolate the mount at a predetermined amplitude at varying frequencies.

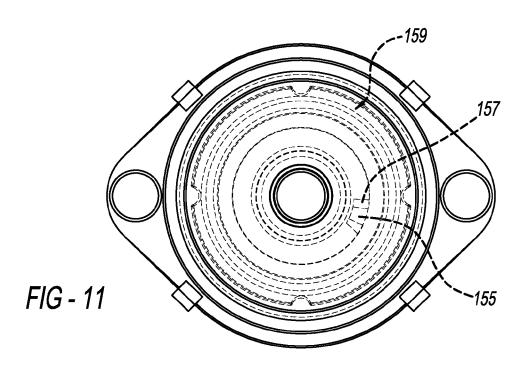

6 Claims, 6 Drawing Sheets




US 9,441,704 B2 Page 2


(56)	References Cited				2006/0261531 2008/0018031		11/2006	Kim Goudie		
		U.S.	PATENT	DOCUMENTS		2013/0015614 2013/0015614	A1	9/2011	Bradshaw et al. Bradshaw	F16F 13/16
	5,690,320		11/1997	Kanda Hatano et al.		2013/0038006	Δ1	2/2013	Saito et al.	267/140.13
	6,981,696 7,584,944		9/2009			2013/0069288				F16F 13/16
	8,091,871 8,177,201			Bradshaw et al. Goudie		2016/0003322	A1*	1/2016	Bradshaw	267/140.13 F16F 13/16
	9,097,310	B2 *	8/2015	Gaspar				1/2010		267/140.13
	9,163,695 4/0135299			Saito Kuwayama	F16F 13/1463	* cited by exa	miner			





BOLT THROUGH HYDRAULIC MOUNT WITH AND WITHOUT A DECOUPLER

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional Application of U.S. patent application Ser. No. 14/028,606 filed on Sep. 17, 2013, which is now U.S. Pat. No. 9,097,310. This application claims the benefit of U.S. Provisional Application No. 61/702,828, filed on Sep. 19, 2012. The entire disclosures of each of the above applications are incorporated herein by reference.

FIELD

The present disclosure relates to a bolt through hydraulic mount for coupling components of a vehicle.

BACKGROUND

This section provides background information related to the present disclosure which is not necessarily prior art.

Dampening mounts are commonly used to couple two components of a vehicle while damping vibrations between 25 the components. Damping mounts may be utilized for automotive engine mounts, sub-frame mounts, and body mounts.

To limit the vibrational movement between two components, dampening mounts may include two separate mount assemblies. A dampening mount may, for example, include an elastomeric mount member and a hydraulic mount member. The elastomeric mount member may be disposed between two components of the vehicle. The hydraulic mount member may be coupled with the elastomeric mount member such that one of the components is disposed therebetween. The elastomeric mount member absorbs vibrations deflected between the first and the second component. Furthermore, the elastomeric mount member exerts a load onto the hydraulic mount member which pushes fluid between two chambers to dampen vibrations exerted by the 40 components.

SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.

A hydraulic mount for coupling a first component and a second component in a vehicle may comprise a first elastomeric member, a second elastomeric member, an inner tube 50 assembly, an inner ring, and a track-decoupler assembly.

The first elastomeric member defines a first portion of a first chamber, and the second elastomeric member defines a second portion of the first chamber and defines a second chamber. The second elastomeric member abuts with the 55 first elastomeric member to define the first chamber, and the first chamber and the second chamber retain fluid in a liquid seal manner.

The inner tube assembly defines an opening for receiving a bolt. The first elastomeric member and the second elastomeric member are bonded to an outer surface of the inner tube assembly. The inner ring may be fixedly coupled to the inner tube assembly at a position between the first chamber and the second chamber. The second elastomeric member may be bonded to an outer surface of the inner ring.

The track-decoupler assembly may be fixedly disposed within the inner ring. The track-decoupler assembly may 2

include a housing member, a decoupler cap, and a decoupler ring. The housing member defines a fluid-track in a serpentine manner along an outer surface of the housing member. The fluid-track fluidly couples the first chamber and the second chamber. The decoupler ring may be housed within the housing member, and the decoupler cap may be fixedly disposed within the housing member to retain the decoupler ring. The decoupler ring may be arranged and may freely move between the decoupler cap and a bottom surface of the housing member. Fluid flows between the first chamber and the second chamber by way of the fluid-track when the decoupler ring abuts with either the bottom surface of the housing member or the decoupler cap.

In a feature of the mount, the decoupler ring may isolate vibrations at amplitudes less than or equal to a predetermined amplitude, and the fluid-track may dampen vibrations at amplitudes greater than the predetermined amplitude.

In another form, the present disclosure provides that a hydraulic mount for coupling a first component and a second component in a vehicle, comprises: a first elastomeric member, a second elastomeric member, an inner tube assembly, an inner ring, and an annular member

The first elastomeric member defines a first portion of a first chamber, and the second elastomeric member defines a second portion of the first chamber and defines a second chamber. The second elastomeric member abuts with the first elastomeric member to define the first chamber, and the first chamber and the second chamber retain fluid in a liquid seal manner.

The inner tube assembly defines an opening for receiving a bolt. The first elastomeric member and the second elastomeric member are bonded to an outer surface of the inner tube assembly. The inner ring may be fixedly coupled to the inner tube assembly at a position between the first chamber and the second chamber. The second elastomeric member may be bonded to an outer surface of the inner ring.

The annular member may be fixedly disposed within the inner ring, and may have a fluid-track defined in a serpentine manner along an outer surface of the annular member. The fluid-track may fluidly couple the first chamber and the second chamber. The annular member pushes the fluid between the first chamber and the second chamber by way of the fluid-track to dampen vibrations between the first component and the second component of the vehicle.

DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.

FIG. 1 is a perspective view of a hydraulic mount disposed between two vehicle components according to the present disclosure;

FIG. 2 is perspective view of the hydraulic mount in a first embodiment according to the present disclosure;

FIG. 3 is a cross-sectional view of the hydraulic mount of FIG. 2 according to the present disclosure;

FIG. 4 is an expanded view of an inner ring and a track-decoupler assembly disposed within the hydraulic mount as provided in enlargement 3 of FIG. 3;

FIG. **5** is a cross-sectional view of the inner ring and the track-decoupler assembly of the first embodiment according to the present disclosure;

FIG. 6 is an exploded view of the inner ring and the track decoupler assembly of the first embodiment according to the present disclosure;

FIG. 7 is a top view of the hydraulic mount of FIG. 2 according to the present disclosure;

FIG. 8 is a perspective view of a hydraulic mount in a second embodiment according to the present disclosure;

FIG. **9** is a cross-sectional view of the hydraulic mount of ⁵ FIG. **8** according to the present disclosure;

FIG. 10 is an exploded view of an annular ring and an inner ring of the hydraulic mount of the second embodiment according to the present disclosure; and

FIG. 11 is a top view of the hydraulic mount of FIG. 8 10 according to the present disclosure.

Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.

With reference to FIGS. 1-3, a hydraulic mount 10 having a bolt through construction in a first embodiment is presented. In operation, the mount 10 couples two vehicle components and dampens vibrations exerted by the vehicle components. For example, with reference to FIG. 1, an example of the mount 10 disposed between a first vehicle component 2 and a second vehicle component 4 is depicted. 25

The mount 10 includes an inner tube assembly 11, an upper elastomeric member 14, a lower elastomeric member 16, and a lower housing 18. When assembled, the upper elastomeric member 14 defines a first portion of an upper chamber 20 and the lower elastomeric member 16 defines a 30 second portion of the upper chamber 20 and defines a lower chamber 22. Fluid sealed within the mount 10 flows between the upper chamber 20 and the lower chamber 22.

The inner tube assembly 11 is adapted to receive a bolt through an opening 24. The inner tube assembly 11 may 35 include an inner tube 12 and a lower support 28. The inner tube 12 may have a cylindrical shape. An upper washer 26 is attached to one end of the inner tube 12. The upper washer 26 abuts with one of the vehicle components when the mount 10 is assembled between the two vehicle components.

The inner tube 12 is fixedly coupled to the lower support 28. The lower support 28 may be, for example, pressed-fit with the inner tube 12. When assembled, the lower support 28 and the inner tube 12 move as one piece. The inner tube 45 12, the upper washer 26, and the lower support 28 may be made of metal. It would be appreciated to one skilled in the art that the inner tube assembly 11 may have various suitable configurations and are not limited to the ones depicted in the drawings. For example, the lower support 28 of the inner 50 tube assembly 11 may be fixedly coupled to an end portion of the inner tube 12.

The upper ring 30. The upper ring 30 may be made of metal. The upper ring 30 may substantially have an annular configuration. The upper ring 30 may have at least two flange portions 32 that protrude laterally outward and are positioned at opposite sides of the upper ring 30. The flange portions 32 define an opening for receiving fasteners 34. The upper ring 30 may also include an angular portion 40. The 60 angular portion 40 may have a hook shape cross-section. The angular portion 40 supports the upper elastomeric member 14 when shear and/or compressive forces are exerted by the vehicle components.

The upper elastomeric member 14 is bonded to the inner 65 tube 12 and the upper ring 30. The upper elastomeric member 14 may be, for example, molded around the upper

4

ring 30 and the inner tube 12. The upper elastomeric member 14 extends from the outer surface of the inner tube 12 to the upper ring 30 before the flange portion 32. In other words, the upper ring 30 is coupled to the inner tube 12 by way of the upper elastomeric member 14. The upper elastomeric member 14 is molded around the angular portion 40 of the upper ring 30.

The lower housing 18 supports the lower elastomeric member 16. The lower housing 18 may be fixedly coupled with the lower elastomeric member 16. For example, the lower elastomeric member 16 may be pressed-fit within the lower housing 18. The lower housing 18 may have a cylindrical shape, and may be made of metal. The lower housing 18 may include at least two flange portions 42 that protrude laterally outward and are formed on opposite sides of the lower housing 18. The flange portions 42 define a hole for receiving the fasteners 34.

The fasteners 34 may be used to attach the mount 10 to one of the vehicle components. Specifically, when assembled, the holes defined by the flange portions 32 of the upper ring 30 and the flange portions 42 of the lower housing 18 align with holes of the first vehicle component 2. The mount 10 may then be attached to the first vehicle component 2 by way of the fasteners 34 (FIG. 1).

An outer ring 44 is disposed within the lower housing 18. The outer ring 44 may provide structural support to the lower elastomeric member 16. The outer ring 44 may be made of metal. The outer ring 44 may be a two piece ring having a first ring 44A and a second ring 44B. The second ring 44B may have a hook shape cross-section. Although the outer ring 44 is depicted as a two piece ring, the outer ring 44 may also be made of one or more pieces.

The upper chamber 20 and the lower chamber 22 may communicate by way of a track-decoupler assembly 46. The track-decoupler assembly 46 is disposed within an inner ring 48. The inner ring 48 is fixedly coupled to the lower support 28. The inner ring 48 may be, for example, pressed-fit to the lower support 28. When assembled the inner ring 48, the lower support 28, and the inner tube 12 move as one. The inner ring 48 may be made of metal.

The lower elastomeric member 16 is bonded to the lower support 28, the inner ring 48, and the outer ring 44. The lower elastomeric member 16 is bonded to an outer surface of the inner ring 48. The lower elastomeric member 16 substantially extends from the outer surface of the lower support 28 to the outer ring 44. The lower elastomeric member 16 may be molded around the outer ring 44. When the lower elastomeric member 16 is pressed-fit to the lower housing 18, the outer ring 44 may structurally support the lower elastomeric member 16 and the lower elastomeric member 16 may form a buffer between the outer ring 44 and the lower housing 18. In addition, when assembled, the lower elastomeric member 16 may extend beyond an end portion 49 of the lower housing 18.

The lower elastomeric member 16 defines the lower chamber 22 below the inner ring 48 and defines the second portion of the upper chamber 20 above the inner ring 48. The upper chamber 20 and the lower chamber 22 extend circumferentially around the inner tube 12 and the lower support 28. The upper chamber 20 and the lower chamber 22 retain the fluid within the mount 10.

Various suitable methods for sealing the mount 10 can be employed. For example, o-rings may be disposed at interfaces within the mount 10, such as between an interface of the lower housing 18, the lower elastomeric member 16, and the upper elastomeric member 14. Clamps may also be used to couple the upper ring 30 and the lower housing 18.

With reference to FIGS. 4-7, the track-decoupler assembly 46 includes a decoupler housing 50, a fluid-track 52, a decoupler ring 54, and a decoupler cap 56. The track-decoupler assembly 46 is housed in the inner ring 48 between the upper chamber 20 and the lower chamber 22. The track-decoupler assembly 46 may be fixedly coupled to the inner ring 48. For example, the track-decoupler assembly 46 may be pressed-fit within the inner ring 48.

The decoupler housing 50 may be made of metal or plastic. The decoupler housing 50 defines an aperture 51. The aperture 51 retains the decoupler ring 54 and the decoupler cap 56.

The fluid-track **52** is defined along an outer surface of the decoupler housing **50** (FIGS. **6** and **7**). Fluid flows between the upper chamber **20** and the lower chamber **22** via the fluid-track **52**. Specifically, the decoupler housing **50** defines an upper opening **55** and a lower opening **57**. The upper chamber **20** may access the fluid-track **52** via the upper opening **55**. The lower chamber **22** may access the fluid-track **52** via the lower opening **57**. An opening defined by a bottom portion of the inner ring **48** (not shown) aligns with the lower opening **57** which provides access to the lower chamber **22**. A passage **59** is defined in a serpentine manner along the outer surface of the housing **50** between the upper opening **55** and the lower opening **57**. Accordingly, the fluid-track **52** fluidly couples the upper chamber **20** to the lower chamber **22**.

The decoupler cap **56** may be made of metal or plastic. The decoupler cap **56** includes multiple openings **60** defined 30 through the decoupler cap **56**. The openings **60** allow fluid into the aperture **51**. The decoupler cap **56** may be fixedly disposed within the decoupler housing **50**. For example, the decoupler cap **56** may be bonded or pressed-fit within the decoupler housing **50**. An upper surface of the decoupler cap **56** may be substantially flush with an upper surface of the decoupler housing **50**.

The decoupler ring **54** may be made of plastic, rubber, or metal. The decoupler ring **54** is disposed within the aperture **51**. Specifically, the decoupler ring **54** is arranged between 40 a bottom surface **58** of the decoupler housing **50** and the decoupler cap **56**. The decoupler ring **54** is adapted to float or move within the aperture **51**. Specifically, the decoupler ring **54** freely moves between the bottom surface **58** and the decoupler cap **56**.

The hydraulic mount 10 of the first embodiment couples the first vehicle component 2 and the second vehicle component 4. Specifically, the mount 10 may be fixedly coupled to the first vehicle component 2 by the flange portions 32 of the upper ring 30 and the flange portions 42 of the lower 50 housing 18, as described above. Alternatively, the mount 10 may be coupled to the first vehicle component 2 by the lower housing 18. For example, the lower housing 18 may be pressed-fit to the first vehicle component 2, such as a bracket.

The second vehicle component 4 may be attached to the mount 10 by way of the bolt (not shown). Specifically, the bolt extends through the second vehicle component 4 and the upper washer 26 and the inner tube assembly 11 of the mount 10. The bolt may further be coupled to a nut to secure 60 the bolt in place.

Accordingly, the mount 10 couples the first vehicle component 2 and the second vehicle component 4 by way of the upper washer 26, the inner tube assembly 11, and the lower housing 18. Furthermore, the upper elastomeric member 14 65 and the lower elastomeric member 16 springingly couple (elastomerically couple) the first vehicle component 2 and

6

the second vehicle component 4 by way of the upper washer 26, the inner tube assembly 11, and the lower housing 18.

In operation, the hydraulic mount 10 isolates and dampens vibrations by way of the track-decoupler assembly 46. As the vehicle components move, the mount 10 deflects, thereby compressing and/or extending the upper elastomeric member 14. The upper elastomeric member 14 may absorb some of the load transmitted between the vehicle components.

The track-decoupler assembly 46 can be adapted to isolate and dampen vibrations at a predetermined amplitude. As the upper elastomeric member 14 compresses and/or extends at small amplitudes, the fluid within the mount 10 may be displaced. The movement of the decoupler ring 54 compensates and receives the fluid volume displaced by the mount 10 during small amplitude movement. Compensation provided by the decoupler ring 54 prevents fluid from pushing through the fluid track 52 (i.e., prevents dampening). Thus, at an amplitude less than the predetermined amplitude, the decoupler ring 54 isolates the mount 10 by compensating and receiving the fluid volume displaced.

At an amplitude larger than or equal to the predetermined amplitude, the decoupler ring 54 abuts against either the bottom surface 58 or the decoupler cap 56. The fluid may then push through the fluid-track 52 to dampen the vibration. As the mount 10 compresses and/or extends at the larger amplitude, one of the upper chamber 20 or lower chamber 22 is raised to a higher pressure than the other chamber 20 or 22. As a result, fluid is pushed from the higher pressure chamber to the lower pressure chamber via the fluid-track 52.

It would be appreciated to one skilled in the art that the upper elastomeric member 14 and the lower elastomeric member 16 may have various suitable configurations and are not limited to the ones depicted in the drawings. For example, the upper elastomeric member 14 may extend axially, such that it abuts with the upper washer 26 when the mount 10 is assembled.

Based on the foregoing, the hydraulic mount 10 of the first embodiment includes two elastomeric elements that form a hydraulic region. The hydraulic mount 10 has a one piece configuration for coupling two vehicle components. The hydraulic mount 10 can be adapted to isolate vibrations having an amplitude less than the predetermined amplitude and to dampen vibrations having an amplitude greater than the predetermined amplitude at a predetermined frequency. Specifically, the decoupler housing 50, the decoupler ring 54, and the decoupler cap 56 can be modified to isolate vibrations having an amplitude less than or equal to the predetermined amplitude for all frequencies. In conjunction with the decoupler housing 50, the decoupler ring 54, and the decoupler cap 56, the fluid-track 52 can be adapted to dampen vibrations having an amplitude greater than the predetermined amplitude at the predetermined frequency.

Some mounting applications may forego the use of the decoupler in order to, for example, reduce the cost of the mount, further minimize the complexity of the mount, achieve dampening at all amplitudes, etc. Accordingly, in a second embodiment of the present disclosure, a hydraulic mount 110 has a one piece mount configuration and dampens vibrations at all amplitudes of a predetermined frequency.

With reference now to FIGS. **8-11**, the hydraulic mount **110** includes an inner tube assembly **111**, an upper elastomeric member **114**, a lower elastomeric member **116**, and a lower housing **118**. When assembled, the upper elastomeric member **114** defines a first portion of an upper chamber **120**

and the lower elastomeric member 116 defines a second portion of upper chamber 120 and defines a lower chamber 122

The inner tube assembly 111 includes an inner tube 112 and a lower support 128. The inner tube assembly 111 is adapted to receive a bolt through an opening 124. The inner tube 112 may have a cylindrical shape. An upper washer 126 is disposed at one end of the inner tube 112. The upper washer 126 may abut with one of the vehicle components when the mount 110 is disposed in the vehicle.

The inner tube 112 is fixedly coupled to the lower support 128. The lower support 128 may be pressed-fit with the inner tube 112. When assembled, the inner tube 112 and the lower support 128 move as one piece as the inner tube assembly 15 and define the opening 124.

The lower support 128 may have a lower washer 129 disposed at one end of the lower support 128. Accordingly, the mount 110 has the upper washer 126 at one end and has the lower washer 129 at the other end. The lower washer 129 is fixedly coupled to the lower support 128. The upper washer 126, the inner tube 112, the lower support 128, and the lower washer 129 may be made of metal.

The upper elastomeric member 114 may be molded around an upper ring 130. The upper ring 130 may have at 25 least two flange portions 132 positioned at opposite sides of the upper ring 130. The flange portions 132 define an opening for receiving fasteners 134. The upper ring 130 may also include an angular portion 140. The angular portion 140 may have a hook shape cross section. The angular portion 30 140 supports the upper elastomeric member 114 when compressive and/or shear forces are exerted by the vehicle component.

The upper elastomeric member 114 is bonded to the inner tube 112 and the upper ring 130. The upper elastomeric 35 member 114 may extend from the outer surface of the inner tube 112 to an area of the upper ring 130 before the flange portion 132. The upper elastomeric member 114 may extend axially from the upper chamber 120. Specifically, the upper elastomeric member 114 may be substantially parallel with 40 the inner tube 112 and may be even with an upper surface of the inner tube 112. When assembled, the upper elastomeric member 114 may abut with the upper washer 126.

The lower housing 118 supports the lower elastomeric member 116. The lower elastomeric member 116 may be 45 pressed-fit within the lower housing 118. The lower housing 118 may have a cylindrical shape and include at least two flange portions 142 formed at opposite sides of the lower housing 118. The flange portions 142 may define a hole for receiving the fasteners 134.

The fasteners 134 may be used to attach the mount 110 to one of the vehicle components. For example, when assembled, the holes defined by the flange portions 132 of the upper ring 130 and the flange portions 142 of the lower housing 118 align with holes of a first vehicle component 55 (similar to FIG. 1). The mount 110 may then be attached to the first vehicle component by way of the fasteners 134.

The lower elastomeric member 116 may further be supported by an outer ring 144. The outer ring 144 may be made of metal. The outer ring 144 may be a two piece ring 60 including a first ring 144A and a second ring 144B. It would be appreciated by one skilled in the art that the outer ring 144 may be made of one or more pieces.

The upper chamber 120 and the lower chamber 122 may communicate by way of a fluid-track assembly 147. The 65 fluid track assembly 147 is disposed within an inner ring 148. The inner ring 148 is fixedly coupled to an outer surface

8

of the lower support 128. When assembled, the inner ring 148 moves with the lower support 128 and the inner tube 112

The lower elastomeric member 116 is bonded to the lower support 128, the inner ring 148, and the outer ring 144. The lower elastomeric member 116 may substantially extend from the outer surface of the lower support 128 to the outer ring 144. The lower elastomeric member 116 may be molded around the outer ring 144. When the lower elastomeric member 116 is pressed-fit to the lower housing 118, the outer ring 144 may structurally support the lower elastomeric member 116 and the lower elastomeric member 116 may form a buffer between the outer ring 144 and the lower housing 118.

Furthermore, when assembled, the lower elastomeric member 116 may extend outside of an end portion 149 of the lower housing 118. For example, the lower elastomeric member 116 may protrude from the end portion 149, such that the lower elastomeric member 116 may abut with the lower washer 129 when the mount 110 is assembled.

The lower elastomeric member 116 defines the second portion of the upper chamber 120 and defines the lower chamber 122. The upper chamber 120 and the lower chamber 122 extend circumferentially around the inner tube 112 and lower support 128. The upper chamber 120 and the lower chamber 122 retain the fluid within the mount 110.

The mount 110 dampens vibrations by way of the fluid-track assembly 147. The fluid-track assembly 147 is housed in the inner ring 148 between the upper chamber 120 and the lower chamber 122. The fluid-track assembly 147 may include an annular member 150 and a fluid-track 152. The fluid-track 152 is defined along an outer surface of the annular member 150.

The fluid flows between the upper chamber 120 and the lower chamber 122 via the fluid-track 152. Specifically, the annular member 150 defines an upper opening 155 and a lower opening 157. The upper chamber 120 may access the fluid-track 152 via the upper opening 155. The lower chamber 122 may access the fluid-track 152 via the lower opening 157. In particular, an opening defined by a bottom portion of the inner ring 148 (not shown) aligns with the lower opening 157 to provide access to the lower chamber 122. A passage 159 is defined in a serpentine manner along the outer surface of the annular member 150 between the upper opening 155 and the lower opening 157. Accordingly, the fluid-track 152 fluidly couples the upper chamber 120 to the lower chamber 120

The hydraulic mount 110 of the second embodiment couples the first vehicle component and a second vehicle component in a similar manner as the hydraulic mount 10 of the first embodiment. For instance, the mount 110 may be fixedly couple to the first vehicle component by the flange portions 132 of the upper ring 130 and the flange portions 142 of the lower housing 118.

The second vehicle component may then be attached to the mount 110 by way of the bolt. Specifically, the bolt extends through the second vehicle component and the upper washer 126, the inner tube assembly 111 and the lower washer 129 of the mount 110. The bolt may further be coupled to a nut to secure the bolt in place.

Accordingly, the mount 110 couples the first vehicle component to the second vehicle component by way of the upper washer 126, the inner tube assembly 111, the lower washer 129, and the lower housing 118. Furthermore, the upper elastomeric member 114 and the lower elastomeric member 116 springingly couple (elastomerically couple) the first vehicle component and the second vehicle component

by way of the upper washer 126, the inner tube assembly 111, the lower washer 129 and the lower housing 118.

In operation, the hydraulic mount 110 dampens vibrations by way of the fluid-track assembly 147. As the vehicle components move, the mount 110 deflects, thereby com- 5 pressing and/or extending the upper elastomeric member 114. The upper elastomeric member 114 may absorb some of the load transmitted between by the vehicle components.

The mount 110 of the second embodiment can be adapted to dampen vibrations at a predetermined frequency. In 10 particular, as the mount 110 compresses and/or extends, one of the upper chamber 120 or the lower chamber 122 is raised to a higher pressure than other chamber 120 or 122. As a result, fluid is pushed from the higher pressure chamber to the lower pressure chamber via the fluid-track 152.

The mount 110 of the second embodiment includes the one piece mount configuration similar to the first embodiment. However, the mount 110 of the second embodiment does not include a decoupler (the decoupler cap and the decoupler ring) which prevents dampening at small ampli- 20 tudes. Thus, the mount 110 of the second embodiment dampens vibrations at a predetermined frequency for varying amplitudes.

The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not 25 intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or 30 described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Example embodiments are provided so that this disclosure 35 a second component in a vehicle, the mount comprising: will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those 40 skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and 45 well-known technologies are not described in detail.

The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" may be intended to include the plural 50 forms as well, unless the context clearly indicates otherwise. The terms "comprises," "comprising," "including," and "having," are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of 55 one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

When an element or layer is referred to as being "on," "engaged to," "connected to," or "coupled to" another element or layer, it may be directly on, engaged, connected 60 or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly engaged to," "directly connected to," or "directly coupled to" another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like

10

fashion (e.g., "between" versus "directly between," "adiacent" versus "directly adjacent," etc.). As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.

Spatially relative terms, such as "inner," "outer," "beneath," "below," "lower," "above," "upper," and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the example term "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

What is claimed is:

- 1. A hydraulic mount for coupling a first component and
- a first elastomeric member defining a first portion of a first chamber:
- a second elastomeric member defining a second portion of the first chamber and a second chamber, wherein the second elastomeric member abuts with the first elastomeric member to define the first chamber, the first chamber and the second chamber retain fluid in a liquid seal manner;
- an inner tube assembly defining an opening for receiving a bolt, wherein the first elastomeric member and the second elastomeric member are bonded to an outer surface of the inner tube assembly:
- an inner ring fixedly coupled to the inner tube assembly at a position between the first chamber and the second chamber, wherein the second elastomeric member is bonded to an outer surface of the inner ring; and
- a track-decoupler assembly fixedly disposed within the inner ring and including a housing member, a decoupler cap, and a decoupler ring, the housing member defining a fluid-track in a serpentine manner along an outer surface of the housing member, the fluid-track extending between the first chamber and the second chamber for fluidly coupling the first chamber and the second chamber, the decoupler ring being housed within the housing member, the decoupler cap fixedly disposed within the housing member for retaining the decoupler ring, wherein
- the decoupler ring is arranged and freely moves between the decoupler cap and a bottom surface of the housing member, and
- the fluid flows between the first chamber and the second chamber by way of the fluid-track when the decoupler

11

ring abuts with either the bottom surface of the housing member or the decoupler cap.

- 2. The mount of claim 1, wherein
- the decoupler ring isolates vibrations at amplitudes less than or equal to a predetermined amplitude, and
- the fluid-track dampens vibrations at amplitudes greater than the predetermined amplitude.
- 3. The mount of claim 1, wherein the inner tube assembly includes:

an inner tube:

- a lower support member that is fixedly coupled to the inner tube, wherein
- the first elastomeric member is bonded to an outer surface of the inner tube:
- the second elastomeric member is bonded to an outer 15 surface of the lower support member, and
- the inner ring is fixedly coupled to the lower support member.
- 4. The mount of claim 1 further comprising:
- an upper ring having an angular portion and at least two upper flange portions laterally extending on opposite sides of the upper ring, wherein the upper ring is coupled to an outer surface of the inner tube assembly by way of the first elastomeric member, the first elastomeric member is bonded around the angular portion 25 of the upper ring; and
- a lower housing having at least two lower flange portions laterally extending on opposite sides of the lower housing, the lower housing substantially housing the second elastomeric member, wherein the lower housing 30 is coupled to the inner ring assembly by way of the

12

second elastomeric member, and the upper flange portions of the upper ring are coupled to the lower flange portions of the lower housing.

- 5. The mount of claim 4 further comprising:
- an upper washer disposed at one end of the inner tube assembly, wherein
- the upper washer abuts with the first component of the vehicle.
- the upper washer and the inner tube assembly are coupled to the first component of the vehicle by way of the bolt,
- the upper flange portions of the upper ring and the lower flange portions of the lower housing are coupled to the second component of the vehicle, and
- the first elastomeric member and the second elastomeric member elastomerically couple the first component and the second component of the vehicle.
- 6. The mount of claim 1 further comprising:
- an upper washer disposed at one end of the inner tube assembly, wherein the upper washer abuts with the first component of the vehicle; and
- a lower housing, the second elastomeric member being fixedly disposed within the lower housing, wherein
- the upper washer and the inner tube assembly are coupled to the first component of the vehicle by way of the bolt,
- the lower housing is coupled to the second component of the vehicle, and
- the first elastomeric member and the second elastomeric member elastomerically couple the first component and the second component of the vehicle.

* * * * *